

reescale Semiconductor

Technical Data

Document Number: MD7IC2012N Rev. 0, 4/2013

RF LDMOS Wideband Integrated **Power Amplifiers**

The MD7IC2012N wideband integrated circuit is designed with on-chip matching that makes it usable from 1805 to 2170 MHz. This multi-stage structure is rated for 24 to 32 volt operation and covers all typical cellular base station modulation formats.

Driver Application — 2100 MHz

• Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Volts, $I_{DQ1A} = I_{DQ1B} = 20 \text{ mA}, \ I_{DQ2A} = I_{DQ2B} = 70 \text{ mA}, \ P_{out} = 1.3 \text{ Watts Avg.},$ IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
2110 MHz	31.0	14.7	-51.3
2140 MHz	31.3	14.8	-51.2
2170 MHz	31.5	14.9	-50.6

- Capable of Handling 5:1 VSWR, @ 32 Vdc, 2140 MHz, 14 Watts CW Output Power (3 dB Input Overdrive from Rated Pout)
- Typical P_{out} @ 1 dB Compression Point ≈ 12 Watts CW

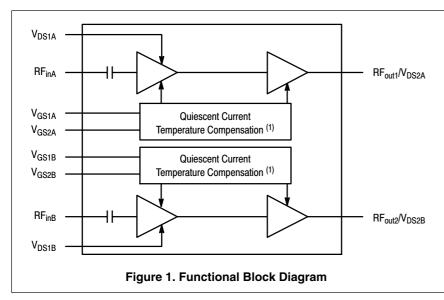
Driver Application — 1800 MHz

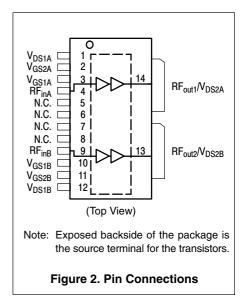
 Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Volts, $I_{DQ1A} = I_{DQ1B} = 20 \text{ mA}, I_{DQ2A} = I_{DQ2B} = 70 \text{ mA}, P_{out} = 1.3 \text{ Watts Avg.},$ IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
1805 MHz	32.8	13.4	-51.0
1840 MHz	32.2	13.6	-51.2
1880 MHz	31.6	13.8	-51.8

MD7IC2012NR1 **MD7IC2012GNR1**

1805-2170 MHz, 1.3 W AVG., 28 V SINGLE W-CDMA **RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS**


Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source S-Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)
- Integrated ESD Protection
- Designed for Digital Predistortion Error Correction Systems
- **Optimized for Doherty Applications**
- 225°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel.

^{1.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (2,3)	T _J	225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (3,4)	Unit
Thermal Resistance, Junction to Case Case Temperature 77°C, 1.3 W, 2170 MHz	$R_{ heta JC}$		°C/W
Stage 1, 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mA, 2170 MHz		7.8	
Stage 2, 28 Vdc, I _{DQ2A} = I _{DQ2B} = 70 mA, 2170 MHz Case Temperature 79°C, 12 W CW, 2170 MHz		3.1	
Stage 1, 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mA, 2170 MHz Stage 2, 28 Vdc, I _{DQ2A} = I _{DQ2B} = 70 mA, 2170 MHz		7.3 2.4	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A
Machine Model (per EIA/JESD22–A115)	А
Charge Device Model (per JESD22-C101)	II

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

- 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.freescale.com/rf. Select Documentation/Application Notes AN1977 or AN1987.
- 2. Continuous use at maximum temperature will affect MTTF.
- 3. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 4. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.

MD7IC2012NR1 MD7IC2012GNR1

Table 5. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 – Off Characteristics ⁽¹⁾	•		•		•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 – On Characteristics ⁽¹⁾		l	l .	I	1
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 5 \mu\text{Adc})$	V _{GS(th)}	1.2	2.0	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mA)	V _{GS(Q)}	_	2.7	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mA, Measured in Functional Test)	$V_{GG(Q)}$	4.2	5.0	5.7	Vdc
Stage 2 – Off Characteristics ⁽¹⁾					•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 – On Characteristics ⁽¹⁾	_				
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 24 μAdc)	V _{GS(th)}	1.2	2.0	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2A} = I _{DQ2B} = 70 mA)	V _{GS(Q)}	_	2.0	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ2A} = I _{DQ2B} = 70 mA, Measured in Functional Test)	$V_{GG(Q)}$	3.2	4.0	4.7	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 200 mAdc)	V _{DS(on)}	0.1	0.24	1.5	Vdc

Functional Tests $^{(2,3)}$ (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ1A} = I_{DQ1B} = 20$ mA, $I_{DQ2A} = I_{DQ2B} = 70$ mA, $P_{out} = 1.3$ W Avg., f = 2170 MHz, Single–Carrier W–CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	30.7	31.5	34.7	dB
Power Added Efficiency	PAE	13.2	14.9	_	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.8	7.3	_	dB
Adjacent Channel Power Ratio	ACPR	_	-50.6	-48.3	dBc

- 1. Each side of device measured separately.
- 2. Part internally matched both on input and output.
- 3. Measurement made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic		Min	Тур	Max	Unit
Typical Performance (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ1A} = I _{DQ1B} = 20 mA, I _{DQ2A} = I _{DQ2B} = 70 mA, 2110–2170 MHz Bandwidth					,

2110-2170 Will 2 Ballawidth					
Pout @ 1 dB Compression Point, CW	P1dB	_	12	_	W
Pout @ 3 dB Compression Point, CW	P3dB	_	13	_	W
IMD Symmetry @ 10 W PEP, P _{out} where IMD Third Order Intermodulation ≡ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)		_	60	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	85	_	MHz
Quiescent Current Accuracy over Temperature (1,2) with 2 k Ω Gate Feed Resistors (-30 to 85°C) Stage 1 with 2 k Ω Gate Feed Resistors (-30 to 85°C) Stage 2	ΔI_{QT}		2.5 2.5		%
Gain Flatness in 60 MHz Bandwidth @ P _{out} = 1.3 W Avg.	G _F	_	0.2	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.03	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB	_	0.012	_	dB/°C

^{1.} Each side of device measured separately.

^{2.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.freescale.com/rf. Select Documentation/Application Notes – AN1977 or AN1987.

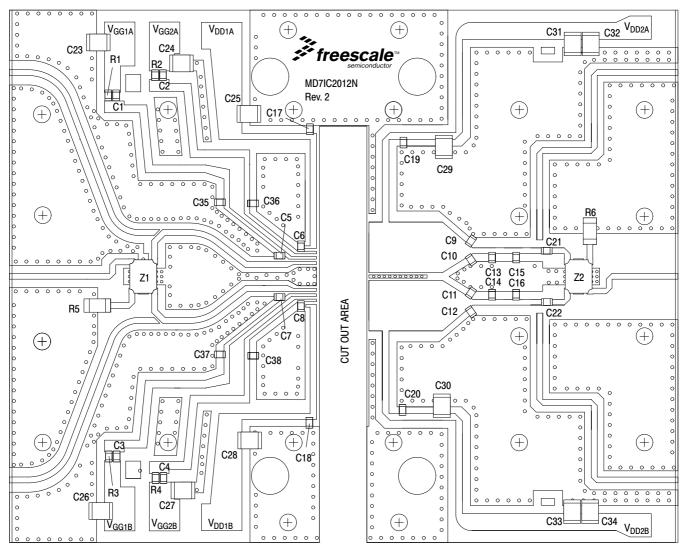


Figure 3. MD7IC2012NR1 Test Circuit Component Layout — 1805–2170 MHz

Table 6. MD7IC2012NR1 Test Circuit Component Designations and Values — 1805–2170 MHz

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	3.9 pF Chip Capacitors	ATC600F3R9BT250XT	ATC
C5, C6, C7, C8	1.0 pF Chip Capacitors	ATC600F1R0BT250XT	ATC
C9, C10, C11, C12	0.6 pF Chip Capacitors	ATC600F0R6BT250XT	ATC
C13, C14	0.8 pF Chip Capacitors	ATC600F0R8BT250XT	ATC
C15, C16	1.2 pF Chip Capacitors	ATC600F1R2BT250XT	ATC
C17, C18, C19, C20	10 pF Chip Capacitors	ATC600F10RBT250XT	ATC
C21, C22	5.6 pF Chip Capacitors	ATC600F5R6BT250XT	ATC
C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34	10 μF, Chip Capacitors	C5750X7S2A106M230KB	TDK
C35, C36, C37, C38	22 nF Chip Capacitors	GRM31BR72E223KW01L	Murata
R1, R2, R3, R4	2 kΩ, 1/8 W Chip Resistors	CRCW12062K00FKEA	Vishay
R5, R6	50Ω , 20 W SM Chip Power Resistors	C20N50Z4	Anaren
Z1, Z2	1800–2300 MHz Band, 90°, 3 dB Hybrid Coupler	X3C21P1-03S	Anaren
PCB	0.020", $\varepsilon_{\rm r} = 3.50$	RO4350B	Rogers

TYPICAL CHARACTERISTICS — 1805-2170 MHz

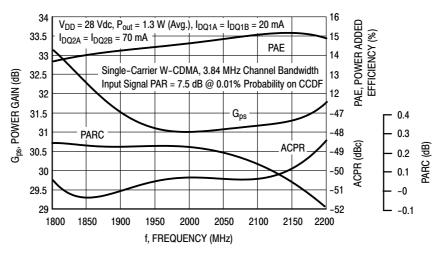


Figure 4. Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 1.3 Watts Avg.

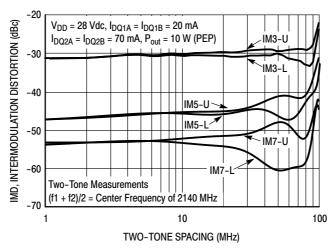


Figure 5. Intermodulation Distortion Products versus Two-Tone Spacing

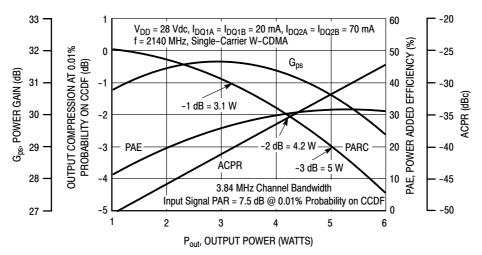


Figure 6. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS — 1805-2170 MHz

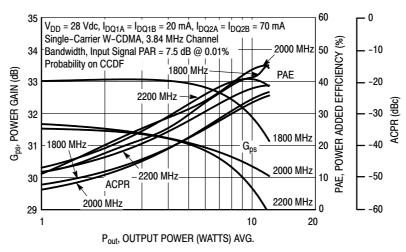


Figure 7. Single-Carrier W-CDMA Power Gain,
Power Added Efficiency and ACPR versus Output Power

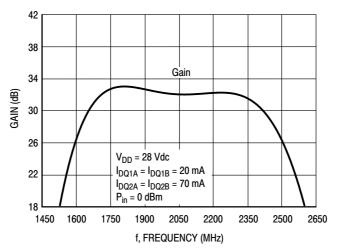


Figure 8. Broadband Frequency Response

W-CDMA TEST SIGNAL

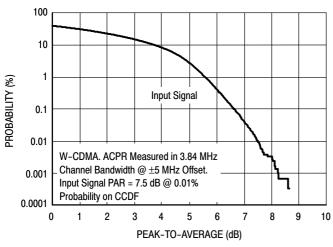


Figure 9. CCDF W-CDMA IQ Magnitude Clipping, Single-Carrier Test Signal

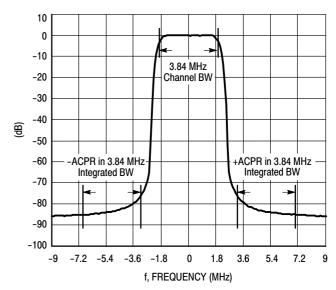


Figure 10. Single-Carrier W-CDMA Spectrum

 V_{DD} = 28 Vdc, I_{DQ1A} = I_{DQ1B} = 20 mA, I_{DQ2A} = I_{DQ2B} = 70 mA, P_{out} = 1.3 W Avg.

· DQIII	שמוט י טעבור ט	QLD , Out
f MHz	Z _{in} Ω	$oldsymbol{Z_{load}}_{\Omega}$
1800	73.3 + j2.21	7.94 – j1.22
1850	82.5 – j7.53	8.26 – j0.97
1900	80.1 – j27.0	8.40 – j1.13
1950	73.8 – j29.4	8.55 – j2.03
2000	64.6 – j33.8	8.67 – j2.62
2050	55.8 – j28.6	8.85 – j2.62
2100	50.5 – j27.2	8.64 – j2.79
2150	50.5 – j27.2	8.43 – j2.89
2200	45.7 – j19.8	8.05 – j2.95

 Z_{in} = Device input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

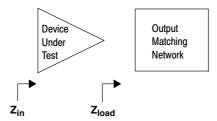


Figure 11. Series Equivalent Input and Load Impedance — 1805–2170 MHz

 V_{DD} = 28 Vdc, I_{DQ1A} = 12 mA, I_{DQ2A} = 80 mA, CW

				Ma	x Output Pov	ver			
			P1dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
2110	48.7 + j29.5	46.6 – j28.5	8.66 – j3.87	28.2	40.0	10.0	50.8	-5.3	
2140	46.8 + j28.4	43.5 – j25.5	7.73 – j3.91	28.8	40.0	10.0	52.7	-7.2	
2170	44.5 + j20.1	42.5 – j22.4	7.57 – j4.37	29.0	40.0	10.0	52.7	-6.9	

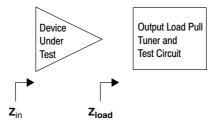
			Max Output Power							
				P3dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2110	48.7 + j29.5	46.3 + j26.5	8.66 – j3.87	26.2	40.7	11.8	51.6	-7.9		
2140	46.8 + j28.4	43.9 – j22.5	9.01 – j4.25	26.4	40.7	11.8	50.8	-9.4		
2170	44.5 + j20.1	42.9 – j19.4	8.73 – j4.51	26.6	40.7	11.8	51.2	-9.2		

⁽¹⁾ Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power.

Note: Measurement made on a per side basis.

Figure 12. Load Pull Performance — Maximum Power Tuning

 $V_{DD} = 28 \text{ Vdc}, I_{DQ1A} = 12 \text{ mA}, I_{DQ2A} = 80 \text{ mA}, CW$


				Max Pov	wer Added Et	ficiency		
			P1dB					
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
2110	48.7 + j29.5	43.2 – j34.5	4.39 – j1.83	30.0	38.8	7.5	57.7	-12
2140	46.8 + j28.4	40.9 – j30.0	4.39 – j2.52	30.4	38.9	7.7	57.2	-13
2170	44.5 + j20.1	39.6 – j25.9	4.69 – j2.49	30.5	38.9	7.8	56.9	-12

				Max Pov	wer Added Et	fficiency			
			P3dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
2110	48.7 + j29.5	44.3 – j30.6	5.17 – j2.00	27.7	39.7	9.4	56.5	-12	
2140	46.8 + j28.4	41.8 – j25.9	5.53 – j2.22	27.9	39.8	9.6	56.1	-13	
2170	44.5 + j20.1	40.2 – j23.7	4.69 – j2.49	28.4	39.4	8.7	55.7	-14	

⁽¹⁾ Load impedance for optimum P1dB efficiency (2) Load impedance for optimum P3dB efficiency.

Note: Measurement made on a per side basis.

Figure 13. Load Pull Performance — Maximum Power Added Efficiency Tuning

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

 Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

 V_{DD} = 28 Vdc, I_{DQ1A} = 12 mA, I_{DQ2A} = 80 mA, CW

				Ma	x Output Pov	wer			
			P1dB						
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)	
1805	61.8 – j5.85	61.6 + j7.80	8.04 – j0.206	29.6	40.0	10.0	54.7	-11	
1840	73.7 – j4.41	70.3 + j1.44	8.01 – j0.273	29.8	40.0	10.0	55.9	-7.6	
1880	73.3 + 8.94	74.5 – j7.06	8.65 – j1.23	29.2	40.0	10.0	53.8	-6.9	

			Max Output Power							
			P3dB							
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	61.8 – j5.85	61.7 + j5.98	8.65 – j0.359	27.4	40.7	11.7	55.4	-18		
1840	73.7 – j4.41	67.7 – j0.606	9.34 – j0.874	27.3	40.7	11.7	54.7	-13		
1880	73.3 + j8.94	72.8 – j7.46	8.65 – j1.23	27.2	40.8	12.0	55.5	-10		

⁽¹⁾ Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power.

Note: Measurement made on a per side basis.

Figure 14. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ1A} = 12 mA, I_{DQ2A} = 80 mA, CW


			Max Power Added Efficiency							
			P1dB							
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	61.8 – j5.85	69.9 + j14.4	5.10 + j2.07	31.4	38.9	7.8	60.8	-13		
1840	73.7 – j4.41	81.0 + j0.271	5.52 + j2.11	31.6	38.8	7.6	60.3	-9.1		
1880	73.3 + j8.94	87.3 – j10.7	4.69 + j0.912	31.0	38.9	7.8	61.1	-10		

			Max Power Added Efficiency								
				P3dB							
f (MHz)	$Z_{source} \ (\Omega)$	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)			
1805	61.8 - j5.85	68.1 + j8.57	5.05 - j0.32	29.3	39.6	9.3	61.4	-15			
1840	73.7 - j4.41	76.4 - j1.31	5.52 + j2.11	29.6	39.5	9.3	61.3	-11			
1880	73.3 + j8.94	79.4 - j10.8	5.43 + j1.07	28.8	39.8	9.3	61.4	-12			

⁽¹⁾ Load impedance for optimum P1dB efficiency (2) Load impedance for optimum P3dB efficiency.

Note: Measurement made on a per side basis.

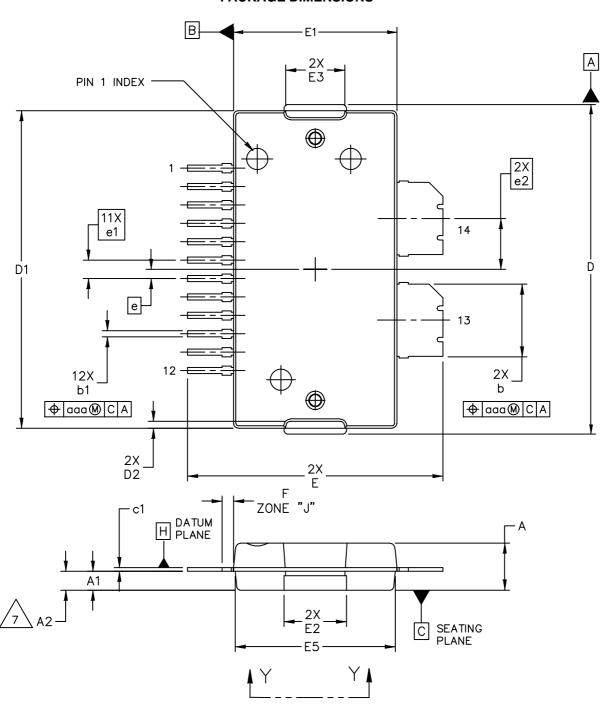
Figure 15. Load Pull Performance — Maximum Power Added Efficiency Tuning

MD7IC2012NR1 MD7IC2012GNR1

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

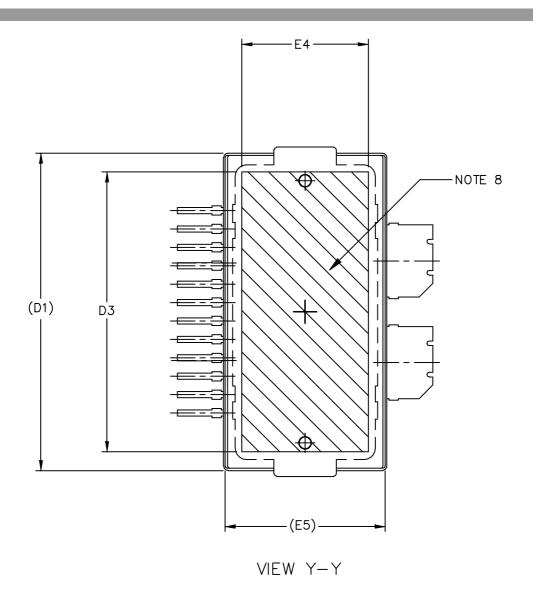
Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.


Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

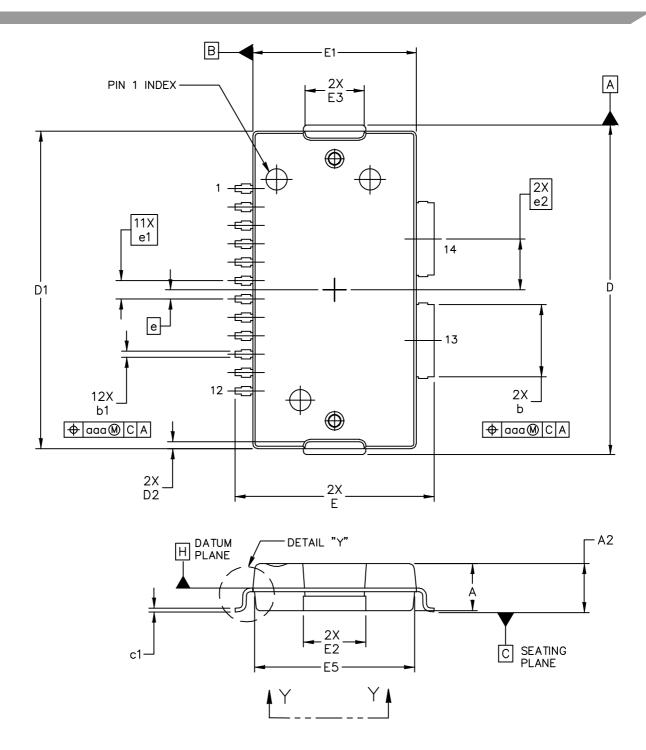
Z_{load} = Measured impedance presented to the output of the device at the package reference plane.



PACKAGE DIMENSIONS

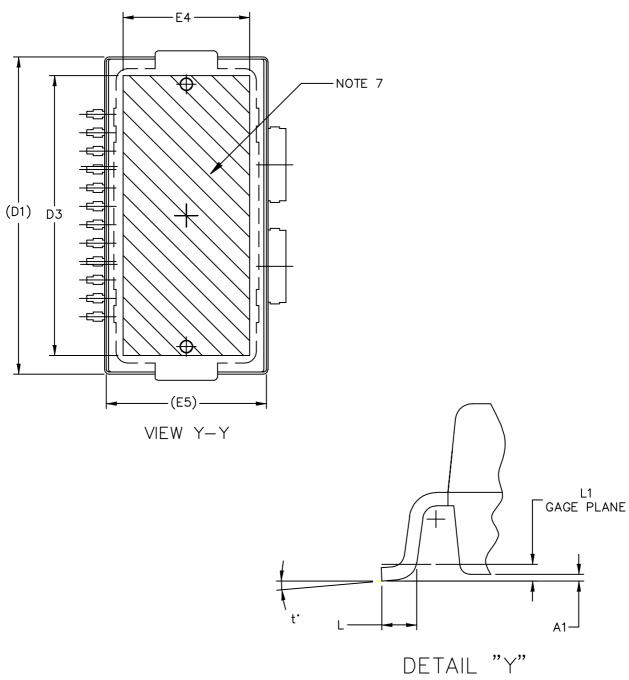
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO: 98ASA10650D REV: A			
TO-270 WIDE BOD) Y	CASE NUMBER	2: 1618–02	19 JUN 2007
TH LLAD		STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA10650D	REV: A
TO-270 WIDE BOD) Y	CASE NUMBER	R: 1618–02	19 JUN 2007
TH LLAD		STANDARD: NO	DN-JEDEC	



- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	CH	MIL	LIMETER			INCH	М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.100	.104	2.54	2.64	F	.025 BSC			0.64 BSC
A1	.039	.043	0.99	1.09	b	.154	.160	3.9 ⁻	1 4.06
A2	.040	.042	1.02	1.07	b1	.010	.016	0.25	0.41
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28
D1	.688	.692	17.48	17.58	е	.020 BSC		(0.51 BSC
D2	.011	.019	0.28	0.48	e1	.c	40 BSC	1.02 BSC	
D3	.600		15.24		e2	.1105 BSC		2.807 BSC	
Ε	.551	.559	14	14.2					
E1	.353	.357	8.97	9.07	aaa		.004	.10	
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35					
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
© 1		MICONDUCTOR, IS RESERVED.	MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE	
TITLE:		070 11"5		DOCU	MENT NO): 98ASA10650I)	REV: A	
	10-	270 WID 14 LEA	E BOD	Y	CASE NUMBER: 1618-02 19 JU			19 JUN 2007	
			٦٦		STANDARD: NON_ IEDEC				


STANDARD: NON-JEDEC

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BOD)Y	DOCUMENT NO): 98ASA10653D	REV: A
14 LEAD		CASE NUMBER	2: 1621–02	19 JUN 2007
GULL WING		STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE: TO-270 WIDE BOD	DOCUMENT NO: 98ASA10653D		REV: A	
14 LEAD	CASE NUMBER	19 JUN 2007		
GULL WING	STANDARD: NON-JEDEC			

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61
A1	.001	.004	0.02	0.10	L1	.010 BSC		0.25 BSC	
A2	.099	.110	2.51	2.79	b	.154	.160	3.9	1 4.06
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	5 0.41
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28
D2	.011	.019	0.28	0.48	е	.020 BSC		0.51 BSC	
D3	.600		15.24		e1	.040 BSC		1.02 BSC	
Е	.429	.437	10.9	11.1	e2	.1105 BSC		2.807 BSC	
E1	.353	.357	8.97	9.07	t	2.	8.	2.	8.
E2	.132	.140	3.35	3.56					
E3	.124	.132	3.15	3.35	aaa	.004		.10	
E4	.270		6.86						
E5	.346	.350	8.79	8.89					
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			L OUT	OUTLINE PRINT VERSION NOT T		T TO SCALE			
TITLE: TO-270 WIDE BODY					DOCUMENT NO: 98ASA10653D			REV: A	
	TO Z/O WIDE DOD!								

TITLE: TO-270 WIDE BODY
14 LEAD
GULL WING

DOCUMENT NO: 98ASA10653D
REV: A
CASE NUMBER: 1621-02
19 JUN 2007
STANDARD: NON-JEDEC

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over–Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Apr. 2013	Initial Release of Data Sheet			

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number: MD7IC2012N Rev. 0, 4/2013